Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Eur J Pharm Sci ; 187: 106489, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-20241144

ABSTRACT

Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Humans , Hyaluronic Acid , Angiotensin-Converting Enzyme 2 , Sulfates , Mice, Transgenic
2.
mBio ; : e0083423, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20240955

ABSTRACT

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-ß, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines.IMPORTANCEMillions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

3.
Vaccines (Basel) ; 11(5)2023 May 21.
Article in English | MEDLINE | ID: covidwho-20238903

ABSTRACT

The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.

4.
Microbiol Spectr ; 11(3): e0065323, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2320659

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide coronavirus disease 2019 (COVID-19) pandemic. Despite the high efficacy of the authorized vaccines, there may be uncertain and unknown side effects or disadvantages associated with current vaccination approaches. Live-attenuated vaccines (LAVs) have been shown to elicit robust and long-term protection by the induction of host innate and adaptive immune responses. In this study, we sought to verify an attenuation strategy by generating 3 double open reading frame (ORF)-deficient recombinant SARS-CoV-2s (rSARS-CoV-2s) simultaneously lacking two accessory ORF proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). We report that these double ORF-deficient rSARS-CoV-2s have slower replication kinetics and reduced fitness in cultured cells compared with their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2s showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against SARS-CoV-2 and some variants of concern and activated viral component-specific T cell responses. Notably, double ORF-deficient rSARS-CoV-2s were able to protect, as determined by the inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2 in both K18 hACE2 mice and golden Syrian hamsters. Collectively, our results demonstrate the feasibility of implementing the double ORF-deficient strategy to develop safe, immunogenic, and protective LAVs to prevent SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Live-attenuated vaccines (LAVs) are able to induce robust immune responses, including both humoral and cellular immunity, representing a very promising option to provide broad and long-term immunity. To develop LAVs for SARS-CoV-2, we engineered attenuated recombinant SARS-CoV-2 (rSARS-CoV-2) that simultaneously lacks the viral open reading frame 3a (ORF3a) in combination with either ORF6, ORF7a, or ORF7b (Δ3a/Δ6, Δ3a/Δ7a, and Δ3a/Δ7b, respectively) proteins. Among them, the rSARS-CoV-2 Δ3a/Δ7b was completely attenuated and able to provide 100% protection against an otherwise lethal challenge in K18 hACE2 transgenic mice. Moreover, the rSARS-CoV-2 Δ3a/Δ7b conferred protection against viral transmission between golden Syrian hamsters.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Mice , SARS-CoV-2/genetics , Vaccines, Attenuated/genetics , Mesocricetus , COVID-19/prevention & control , Vaccination , Immunization , Antibodies, Neutralizing , Mice, Transgenic , Antibodies, Viral
5.
Front Microbiol ; 14: 1176177, 2023.
Article in English | MEDLINE | ID: covidwho-2320188

ABSTRACT

The recognition of viral nucleic acids by host pattern recognition receptors (PRRs) is critical for initiating innate immune responses against viral infections. These innate immune responses are mediated by the induction of interferons (IFNs), IFN-stimulated genes (ISGs) and pro-inflammatory cytokines. However, regulatory mechanisms are critical to avoid excessive or long-lasting innate immune responses that may cause detrimental hyperinflammation. Here, we identified a novel regulatory function of the ISG, IFN alpha inducible protein 27 (IFI27) in counteracting the innate immune responses triggered by cytoplasmic RNA recognition and binding. Our model systems included three unrelated viral infections caused by Influenza A virus (IAV), Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), and Sendai virus (SeV), and transfection with an analog of double-stranded (ds) RNA. Furthermore, we found that IFI27 has a positive effect on IAV and SARS-CoV-2 replication, most likely due to its ability to counteract host-induced antiviral responses, including in vivo. We also show that IFI27 interacts with nucleic acids and PRR retinoic acid-inducible gene I (RIG-I), being the interaction of IFI27 with RIG-I most likely mediated through RNA binding. Interestingly, our results indicate that interaction of IFI27 with RIG-I impairs RIG-I activation, providing a molecular mechanism for the effect of IFI27 on modulating innate immune responses. Our study identifies a molecular mechanism that may explain the effect of IFI27 in counterbalancing innate immune responses to RNA viral infections and preventing excessive innate immune responses. Therefore, this study will have important implications in drug design to control viral infections and viral-induced pathology.

6.
Int J Nanomedicine ; 18: 2307-2324, 2023.
Article in English | MEDLINE | ID: covidwho-2315052

ABSTRACT

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods: Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results: We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion: This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.


Subject(s)
COVID-19 , Zeolites , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Silver/chemistry , Copper , Quaternary Ammonium Compounds , Benzalkonium Compounds , Suspensions , Nitrates , Textiles , Zinc , Polyesters
7.
FEBS J ; 290(13): 3422-3435, 2023 07.
Article in English | MEDLINE | ID: covidwho-2256964

ABSTRACT

Monoclonal antibodies that retain neutralizing activity against multiple coronavirus (CoV) lineages and variants of concern (VoC) must be developed to protect against future pandemics. These broadly neutralizing MAbs (BNMAbs) may be used as therapeutics and/or to assist in the rational design of vaccines that induce BNMAbs. 1249A8 is a BNMAb that targets the stem helix (SH) region of CoV spike (S) protein and neutralizes Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) original strain, delta, and omicron VoC, Severe Acute Respiratory Syndrome CoV (SARS-CoV), and Middle East Respiratory Syndrome CoV (MERS-CoV). To understand its mechanism of action, the crystal structure of 1249A8 bound to a MERS-CoV SH peptide was determined at 2.1 Å resolution. BNMAb 1249A8 mimics the SARS-CoV-2 S loop residues 743-749, which interacts with the N-terminal end of the SH helix in the S post-fusion conformation. The conformation of 1249A8-bound SH is distinct from the SH conformation observed in the post-fusion SARS-CoV-2 S structure, suggesting 1249A8 disrupts the secondary structure and refolding events required for CoV post-fusion S to initiate membrane fusion and ultimately infection. This study provides novel insights into the neutralization mechanisms of SH-targeting CoV BNMAbs that may inform vaccine development and the design of optimal BNMAb therapeutics.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , Antibodies, Neutralizing , Epitopes , Antibodies, Viral , Antibodies, Monoclonal , SARS-CoV-2
8.
Elife ; 122023 03 21.
Article in English | MEDLINE | ID: covidwho-2281462

ABSTRACT

To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of ß-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Mammals
9.
Sci Adv ; 9(13): eade8778, 2023 03 29.
Article in English | MEDLINE | ID: covidwho-2272466

ABSTRACT

Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [Mpro; 3C-like protease (3CLpro)] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Protease Inhibitors/chemistry , Phylogeny , Peptide Hydrolases
10.
Front Immunol ; 14: 1105309, 2023.
Article in English | MEDLINE | ID: covidwho-2285575

ABSTRACT

Interferons (IFNs), IFN-stimulated genes (ISGs), and inflammatory cytokines mediate innate immune responses, and are essential to establish an antiviral response. Within the innate immune responses, retinoic acid-inducible gene I (RIG-I) is a key sensor of virus infections, mediating the transcriptional induction of IFNs and inflammatory proteins. Nevertheless, since excessive responses could be detrimental to the host, these responses need to be tightly regulated. In this work, we describe, for the first time, how knocking-down or knocking-out the expression of IFN alpha-inducible protein 6 (IFI6) increases IFN, ISG, and pro-inflammatory cytokine expression after the infections with Influenza A Virus (IAV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Sendai Virus (SeV), or poly(I:C) transfection. We also show how overexpression of IFI6 produces the opposite effect, in vitro and in vivo, indicating that IFI6 negatively modulates the induction of innate immune responses. Knocking-out or knocking-down the expression of IFI6 diminishes the production of infectious IAV and SARS-CoV-2, most likely because of its effect on antiviral responses. Importantly, we report a novel interaction of IFI6 with RIG-I, most likely mediated through binding to RNA, that affects RIG-I activation, providing a molecular mechanism for the effect of IFI6 on negatively regulating innate immunity. Remarkably, these new functions of IFI6 could be targeted to treat diseases associated with an exacerbated induction of innate immune responses and to combat viral infections, such as IAV and SARS-CoV-2.


Subject(s)
Immunity, Innate , Mitochondrial Proteins , Receptors, Immunologic , Virus Diseases , Humans , Cytokines , SARS-CoV-2/metabolism , Virus Diseases/immunology , Mitochondrial Proteins/genetics , Influenza, Human/immunology , Receptors, Immunologic/immunology
11.
Frontiers in immunology ; 14, 2023.
Article in English | Europe PMC | ID: covidwho-2246072

ABSTRACT

Interferons (IFNs), IFN-stimulated genes (ISGs), and inflammatory cytokines mediate innate immune responses, and are essential to establish an antiviral response. Within the innate immune responses, retinoic acid-inducible gene I (RIG-I) is a key sensor of virus infections, mediating the transcriptional induction of IFNs and inflammatory proteins. Nevertheless, since excessive responses could be detrimental to the host, these responses need to be tightly regulated. In this work, we describe, for the first time, how knocking-down or knocking-out the expression of IFN alpha-inducible protein 6 (IFI6) increases IFN, ISG, and pro-inflammatory cytokine expression after the infections with Influenza A Virus (IAV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Sendai Virus (SeV), or poly(I:C) transfection. We also show how overexpression of IFI6 produces the opposite effect, in vitro and in vivo, indicating that IFI6 negatively modulates the induction of innate immune responses. Knocking-out or knocking-down the expression of IFI6 diminishes the production of infectious IAV and SARS-CoV-2, most likely because of its effect on antiviral responses. Importantly, we report a novel interaction of IFI6 with RIG-I, most likely mediated through binding to RNA, that affects RIG-I activation, providing a molecular mechanism for the effect of IFI6 on negatively regulating innate immunity. Remarkably, these new functions of IFI6 could be targeted to treat diseases associated with an exacerbated induction of innate immune responses and to combat viral infections, such as IAV and SARS-CoV-2.

12.
Sci Transl Med ; : eabq7360, 2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2241405

ABSTRACT

Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein G, the SARS-CoV-2 3CLpro, and the VSV polymerase L. Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral polymerase L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in an additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.

13.
Antibodies (Basel) ; 12(1)2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2225004

ABSTRACT

Coronaviruses (CoV) are enveloped, positive-sense, single-stranded RNA viruses responsible for causing seasonal, mild respiratory disease in humans [...].

14.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Article in English | MEDLINE | ID: covidwho-2130296

ABSTRACT

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Subject(s)
COVID-19 , Respiratory System , SARS-CoV-2 , Humans , Cilia/physiology , Cilia/virology , COVID-19/virology , Respiratory System/cytology , Respiratory System/virology , SARS-CoV-2/physiology , Microvilli/physiology , Microvilli/virology , Virus Internalization , Epithelial Cells/physiology , Epithelial Cells/virology
15.
Microbiol Spectr ; : e0273222, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2108233

ABSTRACT

Reporter-expressing recombinant virus represents an excellent option and a powerful tool to investigate, among others, viral infection, pathogenicity, and transmission, as well as to identify therapeutic compounds that inhibit viral infection and prophylactic vaccines. To combat the ongoing coronavirus disease 2019 (COVID-19) pandemic, we have established a robust bacterial artificial chromosome (BAC)-based reverse genetics (RG) system to rapidly generate recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) to study the contribution of viral proteins in viral pathogenesis. In addition, we have engineered reporter-expressing recombinant viruses in which we placed the reporter genes upstream of the viral nucleocapsid (N) gene to promote high levels of reporter gene expression, which facilitates the study of SARS-CoV-2 in vitro and in vivo. To date, we have shared our BAC-based RG system with more than 100 laboratories around the world, which has helped to expedite investigations with SARS-CoV-2. However, genetic manipulation of the BAC containing the entire SARS-CoV-2 genome (~30,000 nt) is challenging. Herein, we provide the technical details to engineer rSARS-CoV-2 using the BAC-based RG approach. We describe (i) assembly of the full-length (FL) SARS-CoV-2 genome sequences into the empty pBeloBAC, (ii) verification of pBeloBAC-FL, (iii) cloning of a Venus reporter gene into pBeloBAC-FL, and (iv) recovery of the Venus-expressing rSARS-CoV-2. By following this protocol, researchers with knowledge of basic molecular biology and gene engineering techniques will be able to generate wild-type (WT) and reporter-expressing rSARS-CoV-2. IMPORTANCE We have established a bacterial artificial chromosome (BAC)-based RG system to generate recombinant severe acute respiratory syndrome coronavirus 2 (rSARS-CoV-2) and to engineer reporter-expressing recombinant viruses to assess viral infection in vitro and in vivo. To date, we have shared our BAC-based RG system with more than 100 laboratories around the world, which has helped to expedite investigations with SARS-CoV-2. However, genetic manipulation of the BAC containing the full-length SARS-CoV-2 genome of ~30,000 nucleotides is challenging. Here, we provide all the detailed experimental steps required for the successful generation of wild-type (WT) recombinant SARS-CoV-2 (rSARS-CoV-2). Likewise, we provide a comprehensive protocol on how to generate and rescue rSARS-CoV-2 expressing high levels of a Venus fluorescent reporter gene from the locus of the viral nucleocapsid (N) protein. By following these protocols, researchers with basic knowledge in molecular biology will be able to generate WT and Venus-expressing rSARS-CoV-2 within 40 days.

16.
Adv Sci (Weinh) ; : e2202556, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2059257

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause lethal pulmonary damage in humans. It contains spike proteins on its envelope that bind to human angiotensin-converting enzyme 2 (hACE2) expressed on airway cells, enabling entry of the virus, and causing infection. The soluble form of hACE2 binds SARS-CoV-2 spike protein, prevents viral entry into target cells, and ameliorates lung injury; however, its short half-life limits therapeutic utilities. Here, synthetic mRNA is engineered to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. A novel lipid nanoparticle (LNP) is used for packaging and delivering mRNA to cells to produce hsACE2 proteins. Intravenously administered LNP delivers mRNA to hepatocytes, leading to the production of circulatory hsACE2 initiated within 2 h and sustained over several days. Inhaled LNP results in lung transfection and secretion of mucosal hsACE2 to lung epithelia, the primary site of entry and pathogenesis for SARS-CoV-2. Furthermore, mRNA-generated hsACE2 binds to the receptor-binding domain of the viral spike protein. Finally, hsACE2 effectively inhibits SARS-CoV-2 and its pseudoviruses from infecting host cells. The proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed to neutralize SARS-CoV-2 and open new treatment opportunities for coronavirus disease 2019 (COVID-19).

17.
Front Immunol ; 13: 1007089, 2022.
Article in English | MEDLINE | ID: covidwho-2055023

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Subject(s)
COVID-19 , Exoribonucleases , IMP Dehydrogenase , NF-kappa B , Viral Nonstructural Proteins , Bortezomib , Cytokines/metabolism , Exoribonucleases/metabolism , Humans , IMP Dehydrogenase/metabolism , Inosine , Interleukin-6 , Interleukin-8 , Mycophenolic Acid , NF-kappa B/metabolism , Oxidoreductases , Proteomics , Ribavirin , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
18.
Viruses ; 14(9)2022 09 12.
Article in English | MEDLINE | ID: covidwho-2033141

ABSTRACT

Some of the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are less susceptible to neutralization with post-vaccine sera and monoclonal antibodies targeting the viral spike glycoprotein. This raises concerns of disease control, transmissibility, and severity. Numerous substitutions have been identified to increase viral fitness within the nucleocapsid and nonstructural proteins, in addition to spike mutations. Therefore, we sought to generate infectious viruses carrying only the variant-specific spike mutations in an identical backbone to evaluate the impact of spike and non-spike mutations in the virus life cycle. We used en passant mutagenesis to generate recombinant viruses carrying spike mutations of B.1 and B.1.617.2 variants using SARS-CoV-2- bacterial artificial chromosome (BAC). Neutralization assays using clinical sera yielded comparable results between recombinant viruses and corresponding clinical isolates. Non-spike mutations for both variants neither seemed to effect neutralization efficiencies with monoclonal antibodies nor the response to treatment with inhibitors. However, live-cell imaging and microscopy revealed differences, such as persisting syncytia and pronounced cytopathic effect formation, as well as their progression between BAC-derived viruses and clinical isolates in human lung epithelial cell lines and primary bronchial epithelial cells. Complementary RNA analyses further suggested a potential role of non-spike mutations in infection kinetics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Glycoproteins/genetics , Humans , Mutation , RNA, Complementary , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
19.
Pathogens ; 11(9)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2033080

ABSTRACT

The global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to efforts in developing effective vaccine approaches. Currently, approved coronavirus disease 2019 (COVID-19) vaccines are administered through an intramuscular (I.M.) route. Here, we show that the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD), when displayed on immunogenic liposomes, can be intranasally (I.N.) administered, resulting in the production of antigen-specific IgA and antigen-specific cellular responses in the lungs. Following I.N. immunization, antigen-presenting cells of the lungs took up liposomes displaying the RBD. K18 human ACE2-transgenic mice that were immunized I.M or I.N with sub-microgram doses of RBD liposomes and that were then challenged with SARS-CoV-2 had a reduced viral load in the early course of infection, with I.M. achieving complete viral clearance. Nevertheless, both vaccine administration routes led to full protection against lethal viral infection, demonstrating the potential for the further exploration and optimization of I.N immunization with liposome-displayed antigen vaccines.

20.
Proc Natl Acad Sci U S A ; 119(35): e2110105119, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2000999

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.


Subject(s)
Proline , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccine Development , Vesicular Stomatitis , Viral Vaccines , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , Cricetinae , Humans , Mice , Proline/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesicular Stomatitis/virology , Vesiculovirus/immunology , Viral Proteins/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL